% 1. Matrix Creation
A = zeros(4, 4);
for i = 1:4
for j = 1:4
A(i, j) = i + j;
end
end
% 2. Polynomial Definition
% q(x) = x^3 - 4x^2 + 2x + 1
coeffs = [1 -4 2 1];
% 3. Matrix Transformation
B = zeros(4, 4);
for i = 1:4
for j = 1:4
B(i, j) = polyval(coeffs, A(i, j));
end
end
% 4. Minimum Search using a WHILE loop
min_val = B(1, 1);
min_row = 1;
min_col = 1;
i = 1;
while i <= 4
j = 1;
while j <= 4
if B(i, j) < min_val
min_val = B(i, j);
min_row = i;
min_col = j;
end
j++;
end
i++;
end
% 5. Output
disp("Matrix B:");
disp(B);
printf("Minimum value: %d\n", min_val
); printf("Position of minimum value: Row %d, Column %d\n", min_row
, min_col
);
JSAxLiBNYXRyaXggQ3JlYXRpb24KQSA9IHplcm9zKDQsIDQpOwpmb3IgaSA9IDE6NAogICAgZm9yIGogPSAxOjQKICAgICAgICBBKGksIGopID0gaSArIGo7CiAgICBlbmQKZW5kCgolIDIuIFBvbHlub21pYWwgRGVmaW5pdGlvbgolIHEoeCkgPSB4XjMgLSA0eF4yICsgMnggKyAxCmNvZWZmcyA9IFsxIC00IDIgMV07CgolIDMuIE1hdHJpeCBUcmFuc2Zvcm1hdGlvbgpCID0gemVyb3MoNCwgNCk7CmZvciBpID0gMTo0CiAgICBmb3IgaiA9IDE6NAogICAgICAgIEIoaSwgaikgPSBwb2x5dmFsKGNvZWZmcywgQShpLCBqKSk7CiAgICBlbmQKZW5kCgolIDQuIE1pbmltdW0gU2VhcmNoIHVzaW5nIGEgV0hJTEUgbG9vcAptaW5fdmFsID0gQigxLCAxKTsKbWluX3JvdyA9IDE7Cm1pbl9jb2wgPSAxOwoKaSA9IDE7CndoaWxlIGkgPD0gNAogICAgaiA9IDE7CiAgICB3aGlsZSBqIDw9IDQKICAgICAgICBpZiBCKGksIGopIDwgbWluX3ZhbAogICAgICAgICAgICBtaW5fdmFsID0gQihpLCBqKTsKICAgICAgICAgICAgbWluX3JvdyA9IGk7CiAgICAgICAgICAgIG1pbl9jb2wgPSBqOwogICAgICAgIGVuZAogICAgICAgIGorKzsKICAgIGVuZAogICAgaSsrOwplbmQKCiUgNS4gT3V0cHV0CmRpc3AoIk1hdHJpeCBCOiIpOwpkaXNwKEIpOwpwcmludGYoIk1pbmltdW0gdmFsdWU6ICVkXG4iLCBtaW5fdmFsKTsKcHJpbnRmKCJQb3NpdGlvbiBvZiBtaW5pbXVtIHZhbHVlOiBSb3cgJWQsIENvbHVtbiAlZFxuIiwgbWluX3JvdywgbWluX2NvbCk7Cg==