# Ideone机器学习实验 - 基础版
import numpy as np
from sklearn.linear_model import LinearRegression
print("🎯 Ideone线性回归实验")
# 生成数据
X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)
y = np.array([2, 4, 6, 8, 10])
# 训练模型
model = LinearRegression()
model.fit(X, y)
# 输出结果
print(f"斜率: {model.coef_[0]}")
print(f"截距: {model.intercept_}")
print(f"R²得分: {model.score(X, y)}")
print("✅ 简单线性回归完成")
IyBJZGVvbmXmnLrlmajlrabkuaDlrp7pqowgLSDln7rnoYDniYgKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gc2tsZWFybi5saW5lYXJfbW9kZWwgaW1wb3J0IExpbmVhclJlZ3Jlc3Npb24KCnByaW50KCLwn46vIElkZW9uZee6v+aAp+WbnuW9kuWunumqjCIpCgojIOeUn+aIkOaVsOaNrgpYID0gbnAuYXJyYXkoWzEsIDIsIDMsIDQsIDVdKS5yZXNoYXBlKC0xLCAxKQp5ID0gbnAuYXJyYXkoWzIsIDQsIDYsIDgsIDEwXSkKCiMg6K6t57uD5qih5Z6LCm1vZGVsID0gTGluZWFyUmVncmVzc2lvbigpCm1vZGVsLmZpdChYLCB5KQoKIyDovpPlh7rnu5PmnpwKcHJpbnQoZiLmlpznjoc6IHttb2RlbC5jb2VmX1swXX0iKQpwcmludChmIuaIqui3nToge21vZGVsLmludGVyY2VwdF99IikKcHJpbnQoZiJSwrLlvpfliIY6IHttb2RlbC5zY29yZShYLCB5KX0iKQpwcmludCgi4pyFIOeugOWNlee6v+aAp+WbnuW9kuWujOaIkCIp